
Robotics and Computer–Integrated Manufacturing 51 (2018) 202–208 

Contents lists available at ScienceDirect 

Robotics and Computer–Integrated Manufacturing 

journal homepage: www.elsevier.com/locate/rcim 

Variable motion mapping to enhance stiffness discrimination and 

identification in robot hand teleoperation 

Lingzhi Liu 

a , Yuru Zhang 

a , Guanyang Liu 

a , ∗ , Weiliang Xu 

b 

a State Key Laboratory of Virtual Reality Technology and Systems, Robotics Institute, Beihang University, 37 Xueyuan Road, 100191 Beijing, China 
b Department of Mechanical Engineering, The University of Auckland, Private Bag 92019, Auckland, New Zealand 

a r t i c l e i n f o 

Keywords: 

Force feedback 

Stiffness perception 

Robot hand teleoperation 

a b s t r a c t 

In robot hand teleoperation system, force feedback is critical for operator to perceive the physical property of 

grasped objects. However, it is challenging to implement accurate force feedback if the force accuracy of a haptic 

device is limited. This paper proposes a variable motion mapping method to enhance stiffness discrimination of 

the remote object. In this method, the motion mapping coefficient is regulated according to the object stiffness so 

that the operator can perceive the stiffness difference of the remote objects. To validate the proposed approach, 

we conducted two experiments on a three-finger robot hand (BarrettHand BH8-280) teleoperation system. In the 

first experiment, we measured the minimum relative change in feedback stiffness that could be detected by the 

operator. The result shows that the relative change should be 70% for a correct detection rate of about 91%. 

Based on the result, the motion mapping coefficient was selected for the system. In the second experiment, the 

variable motion mapping method was compared to a constant motion mapping method. The experimental task 

in the comparison is identifying four objects through stiffness perception alone. The experimental results show 

that the variable motion mapping method enhances the discrimination of the objects. The operator can identify 

individual object within a group of four without visual feedback with the variable motion mapping method. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The purpose of using haptic feedback in teleoperation system is to

nable operators to perceive the remote environment and enhance op-

rational efficiency. To achieve this, the system must be transparent,

.e. the force perceived by the operator should be the actual force from

he remote site. However, due to inertia, friction and backlash of the

eedback devices, it is difficult to achieve perfect transparency [1] . In

any applications, the transparency is redefined using task-specific per-

ormance criteria, for which the force feedback is required to benefit the

perator to finish the task. For example, in teleoperated surgery, non-

inear and filtered force/position mappings were proposed to enhance

tiffness discrimination of soft-tissue [2–4] . 

In this paper, we focus on teleoperation of robot hands in unstruc-

ured environment. Tele-control a robot hand to effectively grasp a wide

ariety of unknown objects is challenging. Since the objects have vari-

us properties, from soft to hard, light to heavy, fragile to solid. Visual

eedback is essential for operators to acquire the position and shape

f a grasped object for planning an effective grasp. Once a robot hand

ontacts the object, haptic feedback becomes dominant for the operator

o perceive the interaction between the robot hand and the object [5] .
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aptic feedback has been proved to enhance telegrasping performance

6–8] . High performance force sensors could be used in robot hand to

easure the contact forces in remote environment accurately. Accord-

ngly, haptic devices should also be able to provide accurate feedback

orce to operators. However, it is difficult for existing force feedback

evices to accurately reproduce the force signals measured from slave

ide and render them to the operators. 

Haptic gloves are the most commonly used master devices in robot

and teleoperation [9–13] . Lii et al. [11] used CyberGrasp as the master

evice to tele-control a robot hand in space. They found that the limi-

ations in output force accuracy of CyberGrasp would restrict the grasp

erformance, especially with the grasping of deformable objects. Since

he operator could not identify the object boundary based on force feed-

ack, the telegrasping was much difficult. Peer et al. [12] used Cyber-

rasp to telemanipulate a BarrettHand. They mentioned that the quite

uge friction in the tendons of CyberGrasp made it difficult to apply

eally small forces. Salvietti and Meli et al. [13,14] used two Omega.3

o telemanipulate a KUKA KR3 arm and the DLR-HIT Hand II. They

roposed a method to map the motion of the master and slave devices

aving different structures. Monroy et al. [15] developed a multi-finger

aptic interface for precise object grasping and collaborative manipula-

ion. Liarokapis et al. [16] implemented a low cost force feedback device
ber 2017 
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Fig. 1. The principle of variable motion mapping method for enhanced stiffness percep- 

tion. 

Fig. 2. Pre-contact step: object parameters estimation before real grasp. 
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ased on RGB LEDs and vibration motors to teleoperate a five fingered

obot hand, DLR/HIT II. 

This paper presents a method, called viable motion mapping, to en-

ance stiffness discrimination and identification of the grasped object

n robot hand teleoperation. We aim to use low cost commercial haptic

evices to achieve the goal. Stiffness relies on both force and displace-

ent. Most impedance type haptic devices have limited force range,

ut their workspace is large enough for grasp motion mapping. We reg-

late the motion mapping coefficient between the master device and the

lave robot hand based on real time estimation of the object stiffness.

he feedback stiffness is adjusted with different coupling of motion and

orce feedback so that operators can perceive a clear difference in object

tiffness. 

A robot hand teleoperation system was constructed which includes

 three-finger BarrettHand and a low-cost commercial haptic device,

alcon. Two experiments on this system were conducted. The purpose

f the first experiment is to find out the minimum relative change of

eedback stiffness that can be detected by the operator. Based on the

esult of this experiment, the change of the motion mapping coefficient

an be determined to enhance the discrimination of the objects stiff-

ess. To evaluate the performance of the proposed method, the second

xperiment was conducted in which the tasks was to identify remote

bjects through only haptic perception. The experimental results show

hat, compared to constant motion mapping method, the variable mo-

ion mapping method has better performance in the stiffness identifica-

ion of the remote objects. 

The following section introduces the principle of the proposed

ethod. Section 3 describes the BarrettHand teleoperation system used

s the test bed of the method. Section 4 describes the experiments and

esults for the system and Section 5 presents the conclusion and future

ork. 

. The variable motion mapping method 

In this section, the principle of the variable motion mapping method

or enhanced stiffness perception in robot hand teleoperation is pre-

ented. And the object stiffness estimation method is introduced. 

.1. Variable motion mapping 

In teleoperation systems, motion mapping between the master side

nd the slave side can be defined as: 

 𝑠 = 𝑓 ( 𝑘 𝑝 , 𝑃 𝑚 ) (1)

here P m 

and P s represent the master and the slave motion (position

r velocity) respectively, and k p is the motion mapping coefficient with

hich the slave workspace is enlarged or reduced as compared to the

aster workspace. The value of k p could be constant or variable de-

ending on the system hardware capability and the task requirement.

imilarly, the force mapping in teleoperation systems can be defined as:

 𝑠 = 𝑓 ( 𝑘 𝑓 , 𝐹 𝑚 ) (2)

here F m 

and F s represent the master and the slave force respectively,

nd k f is the force mapping coefficient. 

The stiffness perception of teleoperation systems is based on the com-

ination of the force ( F ) and the displacement ( ∆d ) cues, which satisfies

he stiffness definition K = F / ∆d. Suppose the functions in formulas

1) and (2) are linear, the feedback stiffness in the master side K m 

can

e expressed as follows: 

 𝑚 = 

𝑘 𝑝 

𝑘 𝑓 
𝐾 𝑠 (3) 

here K s is the object stiffness. The expression shows that the perceived

tiffness in the master side is related to the motion and the force mapping

oefficients in the teleoperation system. 
203 
In order to enhance stiffness perception in robot hand teleoperation,

e propose a variable motion mapping method. The basic idea of the

ethod is to change the feedback stiffness by regulating the motion

apping coefficient k p . The force mapping is kept constant to guarantee

he stability of the teleoperation system. 

As illustrated in Fig. 1 , an operator is tele-grasping an object

ith stiffness K s . For the same slave displacement ∆d , a smaller mo-

ion mapping coefficient ( k p1 < k p2 ) results in a larger master motion

 ∆P m 1 > ∆P m 2 ) which would make the operator feel that the object is

ofter as F m 

= F s . So by changing the motion mapping coefficient, an

llusion of stiffness ( K m 1 < K m 2 ) can be achieved. 

With the variable motion mapping, we can make soft objects feel

ven softer, and hard objects feel even harder. When setting a smaller

alue of k p , the robot hand would move slower than the operator and the

ime achieving the same contact force would be longer. Thus, the per-

eived stiffness would be lower. In contrast, when setting a larger value

f k p , the robot hand would move faster than the operator and the time

chieving the same contact force would be shorter, thus the perceived

tiffness would be higher. In this way, we can use haptic devices with

ow output force resolution to distinguish different objects with similar

tiffness. 

.2. Real-time stiffness estimation 

In the variable motion mapping method, the motion mapping coef-

cient k p is set based on real stiffness estimation of grasped objects. We

onsider teleoperation tasks in unknown environments. In such environ-

ents, the material and property of the objects are unknown. Therefore,

 pre-contact step is defined to estimate the stiffness of an object in slave

nvironment. 

The first step of stiffness estimation is to make the robot hand contact

he object with a restricted force and then leave it (see Fig.2 ). As in the

ollowing experiments, we set the maximum contact force to 2[ N ]. Based

n the contact force and finger motion information, the motion mapping

oefficient can be estimated by using a stiffness computation model.

everal models of stiffness computation [17–19] have been proposed in

hich the relationship between the penetration of the contacting bodies
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Fig. 3. The robot hand teleoperation hardware system. 
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s s  
nd the contact force were represented. We use Hunt-Crossley model

20] to estimate the contact impedance, which has been proved to be

uitable for describing the contact dynamics of both stiff and soft objects.

he model is formulated as: 

 𝑖 ( 𝑡 ) = 

{ 

𝑘 𝑖 𝑥 𝑖 
𝑛 ( 𝑡 ) + 𝜆𝑖 𝑥 𝑖 

𝑛 ( 𝑡 ) 
∙
𝑥 𝑖 ( 𝑡 ) , 𝑥 𝑖 ≥ 0 

0 , 𝑥 𝑖 < 0 
(4)

here i = 1,2,3… represents the number of robot fingers. x i is the pene-

ration depth between the finger i and the object, which is calculated by

he distance the finger moves after it initially contacts the object. F (t) is

he contact force. k i and 𝜆i are the elastic and viscous parameters which

re determined by the stiffness and hardness of the grasped object. n is a

onstant number which relates to the geometry of contact surface. The

nline estimation algorithm in [19] is used to calculate the parameters

 i and 𝜆i with the following recursive equations: 

 

 

 

 

 

𝜃( 𝑡 + 1) = 𝜃( 𝑡 ) + 𝑄 ( 𝑡 + 1)[ 𝜑 ( 𝑡 + 1) − 𝜇𝑇 ( 𝑡 + 1) 𝜃( 𝑡 )] 
𝑄 ( 𝑡 + 1) = 𝑅 ( 𝑡 ) 𝜇( 𝑡 + 1) [ 𝛽 + 𝜇𝑇 ( 𝑡 + 1) 𝑅 ( 𝑡 ) 𝜇( 𝑡 + 1)] −1 
𝑅 ( 𝑡 ) = [ 𝐼 − 𝑄 ( 𝑡 ) 𝜇𝑇 ( 𝑡 )] 𝑅 ( 𝑡 − 1)∕ 𝛽

(5)

here 𝜃( 𝑡 ) = [ 𝑘 ( 𝑡 ) , 𝜆( 𝑡 )] 𝑇 𝜇( 𝑡 ) = [ 𝑥 𝑛 ( 𝑡 ) , 𝑥 𝑛 ( 𝑡 ) ̇𝑥 ( 𝑡 )] 𝑇 𝜑 ( 𝑡 ) = 𝐹 ( 𝑡 ) , t represents

he discrete time variable where the step size is 10 ms. 𝛽 represents the

orgetting factor limiting the estimation to more recent measure which

s set to be 1 in this paper. 𝜃(0) = [1 , 1] 𝑇 is chosen as the initial value for

teration. 

We compute the elastic and viscous parameters from the estimation

rocess for each finger based on the above mentioned algorithm. We

ssume that the material of the objects is homogeneous. The estimated

tiffness K s for the object is set by averaging the values k i obtained for

ll the contact points: 

 𝑠 = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝑘 𝑖 (6)

here N represents the number of the contact points. 

.3. Determination of the motion mapping coefficient 

According to Eq. (3) , if the force mapping coefficient remain un-

hanged, the feedback stiffness difference ∆K m 

is related to the esti-

ated stiffness difference of objects ∆K s and the motion mapping coef-

cient difference ∆k p : 

𝐾 𝑚 = 

𝐾 𝑠 

𝑘 𝑓 
Δ𝑘 𝑝 + 

𝑘 𝑝 

𝑘 𝑓 
Δ𝐾 𝑠 + 

Δ𝑘 𝑝 ⋅ Δ𝐾 𝑠 

𝑘 𝑓 
(7)

Combining Eqs. (7) and (3) , we can derive the inequality: 

Δ𝐾 𝑚 

𝐾 𝑚 

≥ 

Δ𝑘 𝑝 
𝑘 𝑝 

+ 

Δ𝐾 𝑠 

𝐾 𝑠 

(8)

The relative change of the feedback stiffness ∆K m 

/ K m 

has a mini-

um value, K MRC , under which the change in feedback stiffness can

ot be detected by the operator. The minimum value depends on the

ntrinsic limitation of the human perception and the technical limita-

ions of haptic devices used in the teleoperation system. According to

q. (8) , if ∆K s / K s is larger than K MRC , the object stiffness can be discrim-

nated without changing the motion mapping coefficient k p . Otherwise,

f ∆K s / K s is smaller than K MRC , k p has to be changed to enlarge the

eedback stiffness difference. In the variable motion mapping method,

e change the motion mapping coefficient k p based on the estimated

tiffness K s as follows: 

 𝑝 = 𝛼𝐾 𝑠 + 𝐶 (9)

here 𝛼 is a scaling factor. C is a constant. The determination of the

caling factor 𝛼 and the constant C should satisfies the following in-

qualities: 

Δ𝑘 𝑝 
𝑘 𝑝 

> 𝐾 𝑀𝑅𝐶 = min (Δ𝐾 𝑚 ∕ 𝐾 𝑚 ) (10)
204 
In order to verify the effectiveness of the proposed method, a Barret-

Hand based teleoperation system was developed based on which two

xperiments were conducted as described in the following sections. 

. BarrettHand teleoperation system 

This section introduces the BarrettHand based teleoperation system

eveloped in our lab. 

.1. System structure 

Fig. 3 shows the system structure. The robot hand on the slave side

s a 4-DOF BarrettHand (BH8-280, Barrett Technology Inc.), which has

hree identical fingers (F1, F2, F3). The maximum output force at the tip

f each finger is 2 kg. The motion range of the finger base joint is 140°.

he BarrettHand has torque sensors installed at the distal joint of each

nger. The range of each torque sensor is ± 1 [Nm]. The accuracy of

he torque sensors is 0.04 [Nm]. The values of strain gages in the torque

ensors were calibrated relating the strain to the joint torque [21] . For

ost grasp tasks, the BarrettHand is flexible enough to generate a proper

osture to grasp objects firmly. 

A low-cost commercial desktop haptic device, Falcon (Novint Tech-

ologies Inc.), was used in the master side which provides a simple and

ntuitive interface for the operator [22] . The haptic device is a 3-DOF

evice with parallel kinematic structure. The handle of the device is a

all of 50 mm in diameter with four tool buttons on it. The maximum

utput force of the device is about 8.9[ N ]. The workspace of Falcon

s 0.01m 

∗ 0.01m 

∗ 0.01 m. The parallel kinematic structure of the Falcon

evice looks quite similar to the grasp configuration of the robot hand

ith symmetrically distributed fingers as shown in Fig. 3 . Therefore, it

an provide an intuitive operating feeling for an operator. Meanwhile,

t is relatively cheaper among those widely used haptic devices. 

The BarrettHand and Falcon were connected by using a local net-

ork. The frequencies of haptic loop and network transmission are 1

Hz. A camera with USB interface was installed in the slave side and

he real-time video was transmitted to the master side. The video and

he simulated virtual robot hand were displayed in the master screen.

 column bar showing the real-time contact force was displayed in the

creen on which two marks showed the maximum pre-contact force and

he maximum grasp force. The maximum pre-contact force is 2[N] and

he maximum grasp force is 7[N] in our system. 

Fig. 4 shows the control architecture of the robot hand teleoperation

ystem. The object stiffness K is estimated in the model estimation and
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ransmitted to the master side for calculating the motion mapping coef-

cient k p . P m 

and P s represent the master and the slave motion respec-

ively. F m 

and F s represent the master and the slave force respectively. 

.2. Robot hand motion mapping 

The motion mapping in the system is designed based on the principle

hat the operator is able to complete operations as simple and intuitive

s possible. The BarrettHand has two modes of motion: 1) fingers close

nd open, and 2) spread motion. In the first mode, the F1, F2, F3 fingers

an close or open independently. In the spread motion, the F1 and F2

ngers can move around the hand palm synchronously. 

We map the motion between the two sides in joint space to avoid

olving inverse kinematic problem. Fig. 5 shows the motion mapping

elationship. The Falcon device is 3-DOF parallel mechanism. When its

nd-effector moves in z-axis, the joint motions of each limb are similar

o the bending and unbending of the robot finger. So the forward and

ackward motions along the z-axis of Falcon are mapped to the close

nd open motion of the fingers respectively. The spread motion of Bar-

ettHand is controlled by the left and right motion (x-motion) of the

alcon ball hand. 

The motion control of different fingers is switched by using the four

uttons on the ball handle of Falcon. The operator can take control of

ach finger by pressing the corresponding button and release the control

y pressing the button again. The F1, F2, F3 and spread buttons can

e selected independently. The three fingers can move individually or

ogether depending on which button is selected. 

The position mapping between the haptic device and the robot hand

s defined as: 

𝜃( 𝑡 ) = 𝑘 𝑝 Δ𝑃 𝑚𝑧 ( 𝑡 ) (11)

here ∆𝜃(t) is the displacement of the finger joint. ΔP mz (t) is the dis-

lacement of the haptic device alone the z axis. The default value of

otion mapping coefficient k p is 400°/m. This default value was se-

ected to ensure that the joint velocities of the master device and the

lave hand are basically the same. 

.3. Force feedback and contact detection 

The grasping force on the fingertip F si ( i = 1,2,3) is calculated using

he strain gage value S sgi , assuming the contact point is at the fingertip.

ecause the maximum output force for Falcon (9[ N ]) is much smaller

han the BarrettHand (20[N] for each finger), we scaled down the grasp-

ng force with the force scale factor k f and set a maximum threshold as,

 si < 15[ N ]. The feedback force F m 

in the master side is calculated as

ollows: 

 m = 𝑘 𝑓 

(∑
𝐹 𝑠𝑖 

)
∕3 (12)

here k f was set to be 0.7. The direction of the feedback force is in the

 axis of the Falcon device. In this method, we assume that the grasps

re always isotropic so that the forces are equally distributed at contact

oints. 

During the grasping, one of the three fingers may reach the object

rstly, which may result in an unexpected movement of the grasped
205 
bject. To solve this problem, a coordination mechanism was designed

n the system to guarantee all the fingers contact the object before they

rasp the object. When a contact is detected between a finger and the

bject, the motion of the finger is suspended automatically until the

ther fingers contact the object. The grasp process started after all the

ngers contact with the object. For each finger, we set a threshold of the

train gage value to detect the contact. The contact can be identified if

he strain gage value is larger than the threshold. The threshold values

ere obtained from testing. 

. Experiment protocol 

Two experiments were conducted on the BarrettHand teleoperation

ystem. Fig. 6 shows the experimental setup. The BarrettHand and the

aster device were separately located in two rooms. Communication be-

ween the master and the slave sides was realized by a UDP/IP protocol

nd the time delay was negligible. 

.1. The minimum relative change of the feedback stiffness 

The purpose of the first experiment is to find out the minimum rel-

tive change of the feedback stiffness K MRC that can be detected by the

perator in the BarrettHand teleoperation system. From Eq. (3) , if the

bject stiffness K s remain unchanged, the relative change of the feed-

ack stiffness equals to that of the motion mapping coefficient: 

Δ𝐾 𝑚 

𝐾 𝑚 

= 

Δ𝑘 𝑝 
𝑘 𝑝 

(13) 

So in the experiment, for a given object, different feedback stiffness

s presented by changing the motion mapping coefficient. In the fol-

owing, we measure the minimum relative change by a discrimination

xperiment. 

.1.1. Participants 

Ten students, 7 male and 3 female, aged from 21 to 30, were paid to

articipate in the experiment. They were all right handed and familiar

ith the haptic device. All the participants had no experience in con-

rolling a robot hand to grasp objects by using haptic device before. This

tudy was approved by the Beihang university IRB and all participants

igned an approved IRB consent form. 

.1.2. Procedure 

Before the experiment, participants were instructed about how to

se Falcon to control BarrettHand. And several sample objects were pro-

ided for the participants to get familiar with the grasping operation and

he feedback during the operation. 

The two-alternative forced-choice method was used in the experi-

ent. In each trial, the participant was presented with a reference feed-

ack stiffness, K m 

(with the motion mapping coefficient k p ), and a test

eedback, K m 

+ ∆K m 

(with the motion mapping coefficient k p + ∆k p ).

hese two stimuli was presented randomly each time. After one trial,

he participant was instructed to respond “1 ” or “2 ” to select which was

tiffer between two stimuli. The reference motion mapping coefficient

 p were 400°/m. The test stimuli was decreased or increased with a

onstant step of 40°/m. And "1-up 1-down" rule was used in the exper-

ment. After each incorrect response, the test feedback was increased.

onversely, after each correct response, the test stimuli was decreased.

he experiment for one object ended if three continued reversals were

btained. The value of K MRC was calculated using the average value of

he three reversals. Two objects, an ocean ball and a water-filled bot-

le, were used in the experiment. We wanted to know if the value of

 MRC changes with different objects. Each participant did the experi-

ent twice with the two objects respectively. Experiment session for one

articipant lasted about half hour, and they could take a break between

uns whenever needed. The participant perceived the feedback stiffness

hrough repeatedly grasping and releasing the object several times. The

bjects were held by the experimenter during the experiment. 
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Fig. 5. Motion mapping between Falcon and BarrettHand. 

Fig. 6. Experimental scene. 
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Fig. 7. The mean value of K MRC for the two objects and the individual result of K MRC for 

each participant. 

4

 

p  

t  

b  

d  

e  

e  

t  

1  

w  

c  

c  

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

40 80 120 160 200 240 280 320

T
h

e
 c

o
r
r
e
c
t 

d
e
te

c
ti

o
n

 r
a

te
 

∆kp (kp=400 degree/m)

Fig. 8. The correct detection rate for each test feedback stiffness. The dashed line in- 

dicates the position of ∆k p is 280 and the corresponding correct detection rate is about 

91%. 
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.1.3. Results 

The experiment recorded two group of K MRC values for the two ex-

eriment objects. Fig. 7 shows the result of the experiment. The paired

 -test analysis in the SPSS statistical software shows that the difference

etween the mean values of K MRC for the two objects is not significantly

ifferent ( t = − 2.25, p > .05). From the result, we can see that the differ-

nce in objects has no significant effect on the experiment result. The

xperiment counted the participants ’ trial number and the correct detec-

ion number for each test stimuli. We summed up the total number of the

0 participants and computed the corresponding correct detection rate

hich shows in the Fig. 8 . From the figure, we can see that the relative

hange of feedback stiffness should be 70% ( ∆k p = 280, k p = 400) for a

orrect detection rate of about 91% for the BarrettHand teleoperation

ystem. 
206 
.2. Object identification based on stiffness perception 

In variable motion mapping method, we can adjust the motion map-

ing coefficient to enlarge stiffness difference between two objects based

n the above experiment result, so that the stiffness discrimination is

uch easier. This would result in a problem that perceived stiffness is

ifferent from the real stiffness. How do we know the real stiffness of

 remote object? In other words, how do we identify remote objects by

erceiving their stiffness? In this experiment, we aim to verify that the

perators can identify remote objects through stiffness perception after

roper training. Again, we verify the effectiveness of the variable mo-

ion mapping method by comparing with the constant motion mapping

ethod. 

The experiment process consists of two phases: stiffness perception

raining and object identification. Participants were the same as in the

rst experiment. 

.2.1. Perception training 

The training process was designed to train the participants to get

amiliar with the feeling of force feedback during object grasping so

hat they can identify the objects during the following tele-grasping. We

hoose a tennis ball and an ocean ball (see Fig.9 ) as the training objects.

he stiffness difference between these two objects is so large that, even

ith the constant motion mapping, the participants can discriminate the

wo objects in teleoperation. 
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Fig. 9. The four objects used in the experiment. 
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Fig. 10. The number of correct identification trials for each participants. 
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Fig. 11. The identification correct rate for the objects with the two motion mapping 

methods. 
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Fig. 12. The average identification time for the objects with two motion mapping meth- 

ods. 
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During the training, participants were asked to grasp one of the two

bjects for five times and try to remember the stiffness perception of

he object. The picture of training objects was displayed on the screen

o that the participants knew which object they were grasping. Then the

bject was switched and the process repeated again. After the training,

 test trial was conducted. The picture of the objects was removed and

he participants were asked to distinguish the objects based on force

eedback. If a participant fails, he/she should repeat the training process

gain until they succeeded. 

.2.2. Object identification 

For object identification, we add two objects (plush doll, plastic toy

gg) in the experiment. The purpose of the motion mapping is to enlarge

he feedback stiffness difference among objects. In the experiment, the

enetration depth x i and the contact force F (t) in Eq. (4) were defined as

he finger joint angle and the joint torque. We chose a median stiffness

alue according to the estimated stiffness of the four objects. The ob-

ects whose estimated stiffness is under 400 would be perceived softer,

therwise they would be perceived harder. So the mapping coefficient

as calculated as follows: 

 𝑝𝑖 = 1 . 5 × ( 𝐾 𝑠 𝑖 − 400) + 400 (14)

here i is the ID number of objects. All the four objects were arranged

n the order of stiffness and displayed on the screen during the identi-

cation experiment as shown in Fig. 9 . The relative differences of the

eedback stiffness between each two objects in Fig. 9 are larger than

0% with the motion mapping coefficient determined by Eq. (14) . The

articipants knew the stiffness difference among these objects shown on

he screen. The experiment task is to identify the remote objects through

tiffness perception. There were no visual feedback during tele-grasping.

articipants identified the objects through comparing the perceived stiff-

ess with that of the training objects. For example, if they feel the object

s harder than the two training objects, they can tell that it is the plas-

ic toy egg. For each object, the participants could try many times to

rasp an object until they can identify it. After the trial for one object,

he participants were asked to answer which object they thought the

emote object was. There were 5 trials for each participant. Thus, one

f the four objects would be selected twice. For each trial, the object

as different and the order for each object to be grasped was randomly

elected. 

Each participant did the experiment twice with the variable motion

apping method and constant motion mapping method respectively. In

he variable motion mapping method, the experiment process includes

wo steps: pre-contact and stiffness perception. In the pre-contact step,

articipants control the robot hand to slightly contact the object with

he contact force less than 2 N for about 1 s and then release it. During

he process, the object stiffness was estimated. After that the participant

egan to perceive the object stiffness through repeatedly grasping and

eleasing the object. In the constant motion mapping method, there is

o pre-contact step, but only the stiffness perception. The default value

f k p in the constant motion mapping method is 400°/m. 
207 
.2.3. Experimental results 

Fig. 10 shows the number of correct identification trials for each

articipant with the variable motion mapping and the constant motion

apping. From the figure, we can see that six of the ten participants

ould correctly identify all the objects with the variable motion map-

ing. But with the constant motion mapping, none of the 10 participants

ould identify all the objects correctly. Fig. 11 gives the identification

ate of each object. The results show that the correct identification rates

ere above 85% for the variable motion mapping,but below 70% for the

onstant motion mapping. In particular, the rates of plush doll (20%)

nd plastic toy egg were much lower than that of the two training ob-

ects. The stiffness differences between plush doll and ocean ball, and

etween tennis ball and plastic toy egg were so small that they were

ard to be identified with the constant motion mapping. 



L. Liu et al. Robotics and Computer–Integrated Manufacturing 51 (2018) 202–208 

Table 1 

The ANOVA results of the average identification time. 

Objects Sample size (trials) F p -value( < .05) 

Plush doll 12 4.927 .037 

Ocean ball 13 3.614 .069 

Tennis ball 12 5.403 .030 

Plastic toy 13 1.377 .252 
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Fig. 12 shows the average time the participants used to identify each

bjects correctly. The ANOVA analysis for the average identification

ime was shown in Table 1 . We found that the average identification

ime for the variable motion mapping is less as compared to the constant

otion mapping. However, the difference of the identification time for

lastic toy egg and ocean ball is not significant. The result indicated

hat the identification efficiency of plush doll and tennis ball was im-

roved by using the variable motion mapping method. But not all the

dentification efficiency was improved. The efficiency evaluation for the

roposed method needs for further study. 

. Conclusion 

It is challenging for current haptic interfaces to provide force feed-

ack for tele-grasping with desirable transparency. In order to overcome

he limitation of current haptic interface for grasping operation, this pa-

er proposed a variable motion mapping method for stiffness perception

n robot hand teleoperation. The key idea of the proposed method is to

egulate the motion mapping coefficient according to the object stiffness

hich is estimated in a pre-contact phase before object grasping. 

The proposed method was verified on a BarrettHand teleoperation

ystem. We found througth the first experiment that the relative change

n feedback stiffness should be 70% for a correct detection rate of about

1%. Based on the result, the motion mapping coefficient was selected

n the second experiment for the identification of object using stiffness

erception. We show that with appropriate training, the variable motion

apping method allows operators to identify individual object within a

roup of four without visual feedback. The results also show that, with

he variable motion mapping method, operators can identify more ob-

ects than with the constant motion mapping. Our study demonstrate

hat the variable motion mapping method can enhances the discrimina-

ion and identification of object stiffness in the robot hand teleoperation.

One limitation of our method is that the object stiffness needs to be

stimated in real-time at slave side by pre-contact. This would decrease

he efficiency of teleoperation. However, in the case that the remote

bjects are hard to be identified by stiffness, this method can be more

fficient than the constant motion mapping. 
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