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Abstract—It is unknown that whether friction coefficients of
materials can be predicted by their images. In this paper, we
explore the correlation between the image gray-level and the
friction coefficient of materials. We introduce a systematic
approach to find the correlation model. First, four key features
were extracted from Gray-Level Co-occurrence Matrix (GLCM)
using Hue Saturation Intensity (HSI) color space. Second, BP
neural network was utilized to establish the correlation model
between the image gray-level and the friction coefficient. The
proposed approach was validated using a dataset with 100
samples. The results show that the average regression error of
the model is 16.7% for the 100 samples, and 2.8% for the subset
of 30 fabric samples among the totals. Within those fabric
samples, the prediction error for new samples is 20.1%. The
experimental results indicate a possibility of inferring the friction
coefficient from the image of the material. This study might
provide a way of automatically constructing a haptic database
through the large amount of images on the internet.
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L.

With the development of computer vision and the Internet,
billions of images have been produced and become widespread
on internet. To exploit the benefit of this big data,
automatically synthesis and geometric modeling of virtual
objects based on image data has become a hot topic in the field
of computer graphics [1].

INTRODUCTION

In the field of haptic synthesis, the physical properties of
the object such as hardness, friction coefficients, texture details
and other features are essential as the basic parameters to
model a virtual object and calculate feedback force. The
existing modeling methods are mainly based on two
approaches: one is using the empirical parameters from the
literature, and the other is through a measurement device to
collect a user’s movement and corresponding contact force data,
and then calculate a fitting to estimate the physical parameters
of the sample [2]. The drawback of the former approach is the
lack of empirical data on theoretical parameters for objects
with complex haptic properties, such as heterogeneous
anisotropic objects. The latter has the advantage of being
suitable for complex attribute characterization, but its
disadvantage is that a special measurement system is necessary
and a large amount of sample measurement experiments need
to be carried out.
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Compared to the large scale geometric models for graphic
rendering, the database of haptic properties available in the
literature for haptic rendering are rather small in both scale and
data type. One representative example is the database
developed by the University of Pennsylvania (UPenn) [3]. In
this data base, 100 samples from ten categories with frictional
coefficient and accelerations during a pen-sample sliding
interaction are provided. Another example is the data set (with
43 samples) created by TUM group [4]. It’s an open question
that how to develop large scale haptic databases by using a
simple way.

Based on the observation that image properties and haptic
properties are two closely related attributes on the surface of an
object, one may wonder whether it is possible to infer haptic
properties of an object from its image. People can distinguish
between different materials by observing their surface image,
and different materials have their own haptic properties, so it
may be possible to build a relationship between the surface
image and haptic properties of the object. Once the relationship
is constructed, we can leverage the existing massive resources
of large-scale image data to propose a new method of haptic
modeling, which will greatly simplify the work of constructing
large-scale haptic databases. This possibility may produce
broad application prospects such as e-shopping, e.g., by
touching the physical properties of diverse cloth images on
internet.

In this paper, we aim to explore the method of inferring the
friction coefficients from the material image data and its
prediction accuracy. To explore this problem, three steps are
performed:

e The first is to construct a data set with collaborative
visual-haptic attributes. The composition of the sample
library should cover different types of materials, and
have a certain amount of samples. As a preliminary
study, we used the 100 material’s image and the related
friction coefficients from [3] for this research. The
friction coefficients of the 100 materials was measured
when a hemispherical metal tooltip slid on the
materials. Section IILA briefly introduces the
composition of the database.

Second, select the appropriate image parameter and the
appropriate haptic parameter as the paired parameters
for the mapping. Considering there are many visual
parameters of the surface, including color, gray,
brightness, refractive index, etc.; In the haptic domain,



physical parameters of an object are also various,
including hardness, friction coefficients, texture details
and so on. The parameters should be chosen based on
the intrinsic dependence of the constitutive relationship
between the visual and haptic properties of the object's
surface. In this paper, we choose gray gradient and
friction coefficient as the mapping parameter pair, as
both of them reflect the micro-geometric variability of
an object’s surface [5]. Section III.B and C provides a
brief introduction to the theoretical basis for this
parameter pair selection.

The third step is to select the appropriate feature
extraction method and feature classification method. In
this paper, we choose the Gray-Level Co-occurrence
Matrix (GLCM) to construct the feature, and form the
eigenvector composed of four parameters. Furthermore
we use the neural network method for feature
classification. Section I11.D provides the details of the
feature extraction method and the feature classification
method.

I1.

Today's haptic technology has enabled people to feel the
presence of virtual objects through various force feedback
devices, such as Phantom [6], HapticMaster [7]. There are also
technologies that allow people to feel the fine texture of the
material, such as Poupyrev et al. designed a tactile feedback
device TeslaTouch that generates electrovibration by using
electro-static variations to allow the user to experience the
texture's rough and uneven tactile sensation [8]. In order to
simulate a more realistic feel of the material, it is necessary to
establish a database of haptic textures in addition to force
feedback devices. In this field, Kuchenbecker et al. has
provided pioneering work with the Penn Haptic Texture
Toolkit (HaTT), an open-source collection of contact force
signals measured from 100 haptic textures which form a haptic
database [3]. Schuwerk et al. establishes haptic texture
database containing controlled and uncontrolled acceleration
recordings for 43 different texture materials using a tool-
mediated interface, which allows for analyzing feature
candidates for texture recognition and retrieval systems [4].

RELATED WORK

In general, the sample of today's haptic databases is small,
and there is lack of sufficient haptic contents for use in haptics
research. In comparison, visual images of various materials in
the Internet is numerous, and it has formed huge image
databases [9]. One promising research direction is to explore an
effective way of combining those massive images and existing
small amount of haptic information, and thus to build a large
scale haptic texture database that could be distributed on
Internet. The potential results will drive the development of
haptic field.

Many researchers have studied the mapping from texture
image of material surface to haptic information. One early
approach to modeling haptic texture concentrated on
identifying the approximate friction coefficients of material
surface by analyzing the pixels of a grayscale image on
material surface to create a bump-map where height directly
depends on shading value [10]. It is unclear whether there
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exists reliable correlation between surface height and pixel
color or not. A second approach modeled texture force and
friction force based on the height map which is established
from the Gauss filter in frequency domain [11]. Further work
has been done to employ 2D wavelet decomposition and
wavelet energy signature in haptic data extraction, which
confirm that techniques in computer vision could be replicated
for computer haptics [12]. Furthermore, Mercier et al. [13]
used luminance to compute the lacking height information
necessary to generate the tactile force for haptic feedback.
In summary, although those work obtain material’s haptic
information just from texture image, all of them adopted
mathematical methods instead of using measured haptic data.
As a result, haptic texture information rendered in this way
were generally created as an approximation of what the surface
might feel like, they couldn’t quantify the realism compared to
the measured data.

In this paper, we take a different approach of using
measured dataset that consisting of both image and haptic data.
Using the measured haptic data as a ground truth, we will be
able to validate the mapping accuracy from grayscale image of
an object to its friction coefficient.

I1I.  METHODs

A.  Data Sources

The purpose of this paper is to explore whether there is a
relationship between the friction coefficient of the material and
the related features of the material texture image, the data used
are from data published by Katherine J. Kuchenbecker ef al.
[3]. They developed a set of haptic texture collection system,
the force, acceleration and position information of the hand-
held pen were measured when the pen slid on flat surfaces of
100 uniform materials, and through these raw data to calculate
the friction coefficient and other tactile information, built a
haptic database. Kuchenbecker et al. open up the data to
promote the development of haptic areas, this paper will use
their collection of 100 materials friction coefficient and texture
image data, there are 48 kinds of fabrics, 30 types of paper, 22
kinds of metal, wood, plastic, carbon fiber, foam, stone, carpet,
tile. Image acquisition equipment is a Sony D40 digital camera,
the image resolution is 1024 x 1024, and the image is under
same lighting conditions and related to the physical scale of the
real material by 15 pixels / mm.

B.  Image Preprocessing

The main purpose of image preprocessing is to eliminate
irrelevant information in the image, enhance the detectability of
the information and simplify the data to the maximum extent,
thereby improving the feature extraction effect and improving
the reliability of information identification. The image
preprocessing method in this paper is color space conversion.
Since the R, G and B components of the RGB color space are
affected by light and the correlation of the three components is
high, it is necessary to convert the image from the RGB space
to the Hue Saturation Intensity (HSI) color space where the
color and luminance information are independent of each other
[14], only the intensity (I) value in the HSI color space is
needed in the subsequent gray level co-occurrence matrix. The



formula for converting from RGB color space to HSI color
space is as follows:

_R+G+B
3

1 (&)

where I is the intensity.

C. Gray-Level Co-occurrence Matrix

Because the texture is formed by the repeated distribution
of the gray distribution in the spatial position, we use the gray-
level co-occurrence matrix method to process the texture image
and extract the texture feature, GLCM is an important texture
analysis method based on estimating the probability density
function of second-order combination condition of images,
which was first proposed by Haralick in 1973 [15]. By
calculating the gray relativity between two pixels in a certain
distance and a certain direction in the image, all the pixels of
the image are surveyed and staftistic, which reflects the
comprehensive information of the image in the direction, the
adjacent interval, the change range and change speed. The
mathematic expression of the co-occurrence matrix is:

PG, j,d 0)={[ (63, (cbax y+a9)| (5 0) =i, f(xc+ax y+23) =]} (2)

where x and y are the pixel coordinates in the image, i and
j are the gray levels of the pixels, ax and ay are the
positional offsets, & is the direction which could be

[0,45,90,135] degrees, d is the co-occurrence matrix step, as
shown in Fig. 1.
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Figure 1. Pixel pair of Gray-Level Co-occurrence Matrix

For convenience of analysis, P(i, j,d.£) is abbreviated
as P,(i,j) . When the positional relationship d between two

pixels is selected, the GLCM is generated as follows:
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An element of the co-occurrence matrix represents the
number of occurrences of a gray-level combination. The

element P,(1,0) represents the number of occurrences of the

case where the two pixel gradation levels of the positional
relationship d are 1 and 0 on the image, and L is the number of
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gradation levels. The normalized co-occurrence matrix is
obtained by dividing each element P, (i, j) by the sum of the

elements to obtain a normalized value P, (i, j) each of which is

smaller than one. Haralick ef al. defined 14 feature parameters
of GLCM for texture analysis. It was found by Ulaby er al. that
only four of the 14 texture features based on GLCM are
uncorrelated. These four features are both easy to compute and
give high classification precision [16]. Generally, four of the
most common features are used to extract image texture
features [17], as follows:

Energy (Angular Second Moment(ASM)):

ASM=Y Y PiG.))

i=0 j=0

The angular second moment is the sum of squares of the

GLCM, and it is also called energy, which reflects the

uniformity of gray distribution and the degree of texture. When

ASM is large, the texture is coarse. On the contrary, when
ASM is small, the texture is small.

Contrast (CON):

Contrast reflects the clarity of the image and the depth of
the texture groove. The deeper the groove depth of texture, the
greater the contrast is, and also smaller by contraries.

Correlation (COR):
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The correlation is used to measure the similarity degree
of the elements of the GLCM in row or column direction.
When the values of the matrix elements are evenly equal, the
correlation value is large; on the other hand, if the matrix pixel
values differ greatly, the correlation value is small.

e Entropy (ENT):
L-1 L=1 . "
ENT =Y > P,(i, j)log P, (i, /) ®)
i=0 j=0

Entropy is a measure of the information amount of an
image, while it is in fact a measure of randomness. Entropy
represents the degree of texture non-uniformity and
complexity of the image. If the texture is complex, the entropy
is large. On the contrary, if the gray level is uniform in the
image, the entropy is small.

In order to observe the relationship between the friction
coefficient and the image, we selected four materials from the
fabric materials and get Fig. 2. Fig. 3 is grayscale height map



of four material textures. It can be seen from Fig. 2 and Fig.3
that the greater the gap of four fabric texture image, and the
non-uniformity degree is, the larger the friction coefficient is,
but whether this relationship is universal or not is worthy of
further exploration. To quantify this problem, this paper uses
the GLCM to extract the features of image texture thickness,
groove depth, etc. And we compare the features of different
material textures with their friction coefficient.

Canvas 30 = 0.27244 Leather |p = 0.36339 Vinyl 2,0 = 049199 Towel, u = 0.70837
Figure 2. Four kinds of fabric materials texture image and theirs

corresponding coefficient of friction (8 x magnification below).

Using four features calculated from four materials shown in
Fig. 2 by GLCM method and theirs corresponding friction
coefficient, we can draw Fig. 4. The following rules can be
seen from Fig. 4: the larger the friction coefficient of the
material, the larger the entropy mean and the second moment
mean, the smaller the correlation mean and the contrast mean,
but the correspondence is not strictly consistent. To investigate
whether there is such a relationship between more materials,
we research 100 kinds of materials’ images and friction
coefficients, and try to describe their relationship.
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Figure 3. Grayscale height map of four materials. The unit of x and y axis is
pixel, z is grayscale value.
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Figure 4. The relationship between friction coefficient and features value of

four materials

D. BP Neural Network for Classification

After a preliminary study, we can find that the friction
coefficient of material is not a simple linear relationship with
each feature. To further explore this complex nonlinear
relationship, we use BP neural network method. BP neural
network is a typical supervised neural network classifier, the
input and output of BP neural network is a highly non-linear
mapping relationship, if the input node number is N, the
number of output nodes is M, then the network is the mapping
from N-dimensional European space to M-dimensional
European space. When a pair of input and output modes are
provided to the network, the neuron's activation function
values will propagate from the input layer through the hidden
layer to the output layer. In accordance with the principle of
reducing error between the expected output and the actual
output, the neural network will amend the connection weights
layer by layer from the output layer through the hidden layer,
and finally back to the input. By adjusting the weights of the
BP neural network and the scale of the network, any nonlinear
function can be approximated with any precision [18].

IV. TEST PROCEDURE

We use GLCM to get visual texture features of material
images, put a certain number of materials’ friction coefficients
and their visual texture features as the training data to the BP
neural network, and train a reliable neural network, then do
prediction analysis based on the trained BP neural network. In
the prediction analysis, we input new materials’ image texture
features to the trained BP neural network and then we get
friction coefficients of the new materials as output which is the
predicted value of the material's true friction coefficient. We
compare the output value with the true value of friction
coefficient, and then get correlation of those two data sets. The
flow chart is shown in Fig. 5.

The feature vector of the image calculated by the gray level
co-occurrence matrix contains four components, which are the
energy, contrast, correlation and entropy of the GLCM, their
meaning is shown in Section III.C. The 100 sets of material
data is drawn out in Fig. 6.
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Figure 5. Flow chart of training the BP neural network
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Figure 6. The distribution of friction coefficient and the feature components.
The y-axis of each picture is coefficient of friction.

It can be seen from Fig.6 that the correlation between the
texture feature and the friction coefficient is not obvious. We
use the feature vector (x,,x,,x,,x,) as input and the friction
coefficient p as output to train the BP neural network. Each
parameter is taken appropriate value according to empirical
formula.

In order to observe the impact of material type on the
training effect of BP neural network, we classify the material,
use different type of materials as training data and random type
of materials for comparison. The training results are shown in
Table I, the relative error is used to describe difference between
the inferred value of friction coefficient calculated by training
neural network and the actual value of friction coefficient.

TABLE L NEURAL NETWORK TRAINING RESULTS
Input sample data 100 30 22 30
The type of material All Fabric Paper Random
Neural network type | BP(10) BP(3) BP(3) BP(3)
The relative error 45% 24.1% 26.7% 44%

Note: Using BP neural network, BP (n) means that the number of hidden layer
parameters of neural network is n.

From the results in Table I, it can be seen that classification
can effectively reduce the relative error, but the relative error is
still very large. In order to further reduce the relative error and
enhance the training effect, we use the method of self-

expanding training data [18]. For example, we have N kinds of
material training data sample (x,x,,---,x,) , and then we
expand the N sizes of the sample to 3N sizes of the sample
like (x,,2,.+, X, X, X, ., X, , X, X+, X, ) . Similarly, we can
get SN, 6N sizes of the sample, and then train them to get the
result data in Table 1.

TABLE 11 RELATIVE ERROR AFTER TRAINING
Input sample data 100 30
The type of input material All Fabric
Neural network type BP(10) BP(3)
1X 45% 24.1%
Sample data 3X 23.1% 5.3%
expansion 5X 18.6% 3.6%
factor 6X 14.9% 3.8%
7X 16.7% 2.8%
Note: nX means that the sample is expanded to n times

From the data in Table II, it can be seen that the self-
expanding method can effectively reduce the training error. It
is noted that the training error of ‘7X is higher than ‘6X’,
indicating that the neural network is overfitting. From the
results in Table I and Table II, it can be seen that the training
error of the neural network can be greatly reduced by the
method of material classification and sample self-expansion. In
addition, whether the functional relationship between the
friction coefficient and the four texture features quantity can
represent the real relationship depends on the prediction effect
in the further experiment.

Figure 7. Friction Coefficient and Image of 30 Fabric Materials

As shown in Fig. 7, 30 kinds of fabric materials were
randomly divided into two groups, of which 25 kinds of
materials to do neural network training data, 5 kinds of
materials to do prediction. We use 25 kinds of materials to train
the BP neural network, and then take five kinds of material
texture feature as input to the trained neural network, thus we
get the inferred friction coefficient of five materials as output.
Finally we calculate the relative error between the real value of
the friction coefficient and the inferred value, the result is
20.1%. This preliminary result suggests that there is a
correlation between the friction coefficient and the image
texture,

The reason why the experiment is not ideal enough is
probably that we lack sufficient samples of materials, which
keep us away from observing the effective rule, and the image
resolution is somewhat low to infer haptic properties. In the
next step, we will try to expand the sample data volume and
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explore new features extraction method and better training
classification method in the follow-up work.

V. CONCLUSION

In order to find out whether there is a relation between
materials’ texture image feature and friction coefficients, this
paper first transforms the texture image into HSI color space
and extracts the I component, next extracts the mean and
variance of texture feature by using gray-level co-occurrence
matrix, and then use the BP neural network to fit the
relationship between four feature quantities and the friction
coefficient. Finally, the correlation between the image feature
and the friction coefficient is determined by BP neural
network prediction precision.

In the process of experiment, we find the effect of material
type on the accuracy of BP neural network, thereby we found
that the material type has an effect on the relationship between
the texture image feature and the friction coefficient, and a
better fitting effect could be achieved by classifying materials.
The final 20.1% prediction error of neural network indicates
that there is a correlation between the texture image feature
and the friction coefficient. It should be noted that the friction
coefficients we used is between the 100 materials and a
hemispherical metal tooltip, so the conclusion is only
established in this case. In the future, we plan to improve the
use of the gray level co-occurrence matrix method by
performing more experiments to find better parameter settings
of pixel gray level, step parameter values, etc.
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