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Abstract In this paper, we propose a new parallel mechanism designed for haptic
interface. The haptic device consists of a 2RSS + RRR parallel mechanism with 3
degrees of freedom. In general, the control of haptic devices requires a high servo
rate up to 1 kHz which demands a fast and real-time solution to the forward
kinematics. Newton–Raphson method is one of the most efficient solutions to
achieve real time requirement. However, its efficiency relies deeply on initial value
of iterations. We present a methodology to overcome this limitation. We first model
the forward kinematics of 2RSS + RRR as an 8th-degree polynomial equation in
one unknown. We then propose two methods for determining the initial value to
reduce the iterations and computing time. The numerical examples in the paper
demonstrate that average time of 0.15 ms (6.7 kHz) for the solutions is achieved
with an accuracy of 0.001 mm. The methodology proposed in this paper is general
and can be applied to other applications requiring real time solutions to forward
kinematics of parallel mechanisms.

Keywords Parallel mechanism � Forward kinematics � Real-time �
Newton-Raphson

1 Introduction

Parallel mechanisms have found many applications in different areas, such as air-
craft simulation, force-torque sensor, CNC machine, haptic device, etc. It is well
known that forward kinematics of parallel mechanisms is, in general, highly non-
linear and difficult to solve in real time. This issue is specifically challenging when a
parallel mechanism is used for haptic devices. This is because the control of haptic
devices often requires high update rate. In order to provide realistic force feedback,
a common practice in the design of haptic devices is to set the update rate of the
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control loop as 1 kHz [1, 2], which requires that the solution to the forward
kinematics of a parallel mechanism much be found within less than 1 ms.

Various numerical methods have been applied to solve forward kinematics of
parallel mechanisms [3–5]. A fast, robust and practical algorithm was presented
specially to solve the forward kinematics of Stewart Platform [3]. The
Newton-Raphson method was modified to overcome the tendency to fail when the
constraint equations become poorly conditioned. Based on the simultaneous solu-
tion of three constraint equations, 0.2 ms were taken at regular configurations and
0.22 ms when the platform was near to a singularity. Another modified
Newton-Raphson method [4] based on Taylor’s series was proposed and the
solutions could be obtained requiring just a few interaction steps. However, cal-
culation time was not mentioned in the paper.

Many effects have been made to convert the nonlinear equations of forward
kinematics to high degree polynomial with one unknown so that forward kine-
matics solutions could be obtained more quickly [6–9]. A mono-dimensional-search
algorithm was reported to the forward kinematics solution of the general 6-6 fully
parallel mechanism in [6]. All the real solutions, free from extraneous, of the
forward kinematics could be found out through this method relied on a high degree
polynomial in one unknown. A kinematic mapping, i.e., to map three-dimensional
motions into a seven-dimensional quasi-elliptic space, was introduced in [7] and
finally a univariate 40th-degree polynomial was obtained. A quaternion to represent
the transformation matrix was introduced in [8]. A concise closed-form solution to
the forward kinematics of the Stewart platform was obtained and as a result, only
univariate quadratic equations were required to solve. Gröbner bases were used by
Gan [9] to analyze the forward kinematics of the general 6-6 Stewart mechanism,
which was reduced to a 40th-degree polynomial equation in one unknown.
However, calculation time was not mentioned in these papers.

Other techniques to find forward kinematics solutions include neural networks,
genetic algorithm and hybrid strategy. Yee [10] used a BP network to recognize the
relationship between input values and output of the forward kinematics problem. It
took about 1 ms to find the forward kinematics solution with an average accuracy
of 0.009 units by performing several iterations. However, long hours were required
for training before implementation. A genetic algorithm was presented in [11].
Although, this method converged to a solution within a broader search domain
compared to the Newton-Raphson scheme, it took about 12–15 times longer,
average 10 ms, than Newton-Raphson method to find the forward kinematics
solution. Kang [12] employed the RBF neural network, which has a universal
approximation capability, to model the forward kinematics of a hybrid structure
robot. Although this method avoids the geometric parameters measurement in the
real robot, a relative long time (6.84 ms) was spent on obtaining solutions to the
forward kinematics with an average position error of 0.0986 mm. A hybrid strategy
to solve forward kinematics in parallel manipulators was reported in [13].
A modified form of multilayered perceptron with back propagation learning was
used to predict the initial position of the forward kinematic for the standard
Newton–Raphson numerical technique. The hybrid strategy could achieve an
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accuracy of about 0.01 mm and 0.01° in the position and orientation parameters in
less than two iterations and 20 ms of execution time.

In this paper, we propose a new 3-DoF parallel mechanism for a haptic device,
which has two RSS chains and one RRR chain. To achieve the frequency of control
loop higher than 1 kHz, we model the forward kinematics of the parallel mecha-
nism as an 8th-degree polynomial equation in one unknown. Newton–Raphson
method is applied and the initial value of iterations is carefully studied to obtain
highly efficient and accurate solution of the forward kinematics.

2 Description for the 2RSS + RRR Parallel Mechanism

The schematic representation of the 2RSS + RRR parallel mechanism is illustrated
in Fig. 1. This mechanism includes two RSS limbs (R: revolute joint; S: spherical
joint) with an actuator at the first revolute joint for each limb and one RRR limb
with an actuator at the first revolute joint. The geometric characteristics associated
with the components of all limbs are as follows (the nomenclature is showed in
Table 1): A plane p can be determined by C, O0C, O1O2 and the axes of the joints
R1 and R2, in which the line (O1O2) ⊥ (O0C) and the axes of R1 and R2 are parallel
to O0C. The axis of R3 is parallel to O1O2 and has a distance of c from O3 to the
plane p. The points of O1, O2, M1 and M2 are in the same plane. The axis of R4 is
parallel to R3 and simultaneously perpendicularly intersects the axis of R5. It should
be noted that a U (Universal) joint is assimilated by R4 and R5. Besides, the line
(P1P2) ⊥ (QM3).

Fig. 1 The 2RSS + RRR
parallel mechanism
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To determine mathematically the relative positions of all limbs, three coordinate
systems Oi-xiyizi (i = 1, 2, 3) of the limbs and a coordinate system O0-x0y0z0 fixed
on the ground are established, as Fig. 1 shows. The homogeneous coordinate
transformation matrices from O0-x0y0z0 to Oi-xiyizi are

O1
O0
T ¼

1 0 0 0
0 1 0 �a
0 0 1 0
0 0 0 1

2
664

3
775; O2

O0
T ¼

�1 0 0 0
0 �1 0 a
0 0 1 0
0 0 0 1

2
664

3
775; O3

O0
T ¼

0 1 0 �b
0 0 1 0
1 0 0 c
0 0 0 1

2
664

3
775

ð1Þ

Consisting of a revolute joint and two spatial joints, the first and second limbs,
which have more than six degrees of freedom, apply no constraint to the moving
platform m. However, the third limb, which has three revolute joints and three

Table 1 Nomenclature

Letters Definitions

m The moving platform

Q The reference point fixed on the moving platform

Ri, i = 1, 2, 3, 4 The revolute joints

Si, i = 1, 2, 3 The spherical joints

Pi, Mi, i = 1, 2 The center point of the joints Si
M3 The intersection of axes of R4 and R5

P3 The intersection of P1P2 and MQ

a The length of O0O1 and O0O2

b The length of O0C

c The length of CO3

d The length of P1P3 and P2P3

e The length of P3Q

Li1, i = 1, 2, 3 The length of OiMi

Li2, i = 1, 2, 3 The length of MiPi

L33 The length of M3Q

O0-x0y0z0 The coordinate system fixed on the ground

Oi-xiyizi, i = 1, 2, 3 The coordinate systems fixed on the joints Ri (i = 1, 2, 3)

O3i-x3iy3iz3i, i = 1, 2, 3 The D-H coordinate systems of the RRR limb

OQ-xQyQzQ The coordinate system of Q fixed on m
q
pT The homogeneous coordinate transformation from p to q

hi1, i = 1, 2, 3 The rotational angles of R1, R2 and R3

h32, h33 The rotational angles of R4 and R5

sh, ch sinh, cosh

//, ⊥ Parallel constraint and perpendicular constraint
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degrees of freedom, applies three independent constraints to m. Consequently,
through the graphical approach [14], we can conclude that the moving platform
m has three degrees of freedom.

3 Forward Kinematics

In this section, we modeled the forward kinematics of the 2RSS + RRR parallel
mechanism. Specially, for the haptic device, we only need to obtain the coordinate
of Q when given the angles of active joints. To achieving this goal, we firstly led the
first constraint equation by modeling the kinematics of the RRR limb on D-H
method. Then, another two constraint equations were led based on the kinematics of
the two RSS limbs. An 8th-degree polynomial equation in one unknown for the
forward kinematics of the 2RSS + RRR parallel mechanism was finally obtained.
Upon solving the one unknown of the high-order polynomial equation, the coor-
dinate of Q will be easily calculated.

Firstly, we focus our attention to the kinematics model of the RRR limb.
Referring to Fig. 2, the D-H parameters of the third limb, which are given in
Table 2, can be obtained. Applying the D-H convention, the four transformation
matrices are led as follows:

Q

1P
2P

O

3P

3M

31 3( )O O

0z

0x 0y

Qz

Qy
Qx

31 3( )z z

31 3( )y y

31 3( )x x

33z

32z
33x

33y

32y

32x

32L

e

b

c

C

31L

d
d

Fig. 2 D-H coordinate
systems of the RRR limb
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O31
O3

T ¼
ch31 �sh31 0 0
sh31 ch31 0 0
0 0 1 0
0 0 0 1

2
664

3
775 O33

O32
T ¼

ch33 �sh33 0 0
0 0 �1 0

sh33 ch33 0 0
0 0 0 1

2
664

3
775

O33
O32

T ¼
ch33 �sh33 0 0
0 0 �1 0

sh33 ch33 0 0
0 0 0 1

2
664

3
775 O34

O33
T ¼

1 0 0 L32
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

ð2Þ

Thus, the forward kinematics equations for the third limb, which are with respect
to the joints variables and the design variables, can be obtained:

Q
O0
T ¼ O3

O0
TO31
O3

TO32
O31

TO33
O32

TQ
O33

T ð3Þ

where Q
O0
T is the homogeneous coordinate transformation matrix from the coordi-

nate system of O0-x0y0z0 to OQ-xQyQzQ, from which we can obtain the first con-
straint equation of the forward kinematics:

x ¼ L31sh31 þ L33sðh31 þ h32Þsh33 � b
y ¼ L33sh33
z ¼ L31ch31 þ L33cðh31 þ h32Þch33 þ c

8<
: ð4Þ

where (x, y, z) is the coordinate of Q in O0-x0y0z0.
To calculate x, y and z from (4), the values of h32 and h33 need to be calculated

first. Thus, the other two following constraint equations are led:

L212 ¼ P1M1j j2
L222 ¼ P2M2j j2

�
ð5Þ

where |PiMi| (i = 1, 2) are the distances between Pi and Mi.
Referring to Fig. 1, the coordinates of Mi (xMi, yMi, zMi) (i = 1, 2) can be

expressed as follows:

xM1

yM1

zM1

2
4

3
5 ¼

0
�a� L11sh11
L11ch11

2
4

3
5;

xM2

yM2

zM2

2
4

3
5 ¼

0
aþ L21sh21
L21ch21

2
4

3
5 ð6Þ

Table 2 D-H parameters of
the RRR limb

i ai−1 ai−1 di hi
1 0 0 0 h31
2 L31 0 0 h32
3 0 90° 0 h33
4 (Q) L32 0 0 0
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According to the D-H parameters of the RRR limb shown in Table 1, the
coordinates of Pi (xPi, yPi, zPi) (i = 1, 2) in O0-x0y0z0 can be obtained:

xP1
yP1
zP1

2
64

3
75 ¼

L31sh31 � bþ dsh33sðh31 þ h32Þþ L32ch33sðh31 þ h32Þ
L32sh33 � dch33

cþ L31ch31 þ dsh33cðh31 þ h32Þþ L32ch33cðh31 þ h32Þ

2
64

3
75 ð7Þ

xP2
yP2
zP2

2
4

3
5 ¼

L31sh31 � b� dsh33sðh31 þ h32Þþ L32ch33sðh31 þ h32Þ
L32sh33 þ dch33
cþ L31ch31 � dsh33cðh31 þ h32Þþ L32ch33cðh31 þ h32Þ

2
4

3
5 ð8Þ

Substituting all the coordinates (6), (7) and (9) into Eq. (5), we can get

k1 þ k2sh33 þ k3ch33 þ ch32ðk4ch33 þ k5sh33Þþ sh32ðk6ch33 þ k7sh33Þ ¼ 0
r1 þ r2sh33 þ r3ch33 þ ch32ðr4ch33 þ r5sh33Þþ sh32ðr6ch33 þ r7sh33Þ ¼ 0

�
ð9Þ

where ki and ri (i = 0–7) are with respect to h11, h21, h31 and other design variables.
Equation (10) can be derived from (9) as follows:

w1 þw2ch32 þw3sh32 ¼ 0
v1 þ v2ch32 þ v3sh32 ¼ 0

�
ð10Þ

where all of wi and vi share a common factor of h33.
If h11 = h21, we can know h31 = 0 by symmetry of the parallel mechanism. If

h11 6¼ h21, we can lead the 8th-degree polynomial equation of the forward kine-
matics from Eq. (10) by applying the tangent half-angle substitution, t = tan(h33/2),
as follows:

X8
i¼0

qit
i ¼ 0 ð11Þ

where qi (i = 0–8) are in terms of h11, h21, h31 and other design variables.
The variable of t in Eq. (11) can be calculated through the Newton-Raphson

approach which is discussed in Sect. 4. Upon obtaining t, it turns out that h33, h32
can be obtained:

h33 ¼ 2 arctanðtÞ

h32 ¼
cos�1ðw3v1�w1v3

w2v3�w3v2
Þ; when h11 6¼ h21

arccosð�2abþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2abÞ2�4ða2 þ 1Þðb2�1Þ

p
2ða2 þ 1Þ Þ; when h11 ¼ h21

8<
:

ð12Þ

where a = −w2/w3, b = −w1/w3.
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In (12), the extraneous root of h32 is avoided. Consequently, substituting h11,
h21, h31, h32, h33 and other design variables into Eqs. (3) and (4), we can obtain the
coordinate of the reference point Q.

Concerns should be raised here that an important but also difficult problem is
how to solve Eq. (11) rapidly and accurately. Although the Newton-Raphson
method, one of the most efficient solutions, can be used, its efficiency relies deeply
on initial value of iterations. To overcome this limitation, we proposed two methods
of determining the initial value of iterations, which are described in the next section.

4 Analysis of Real-Time Forward Kinematics

Aiming to reduce the iterations and computing time, we describe two methods for
determining the initial value of iterations in the Newton-Raphson method. The first
method uses the solution of the previous step as the initial value to calculate
t (t = tan (h33/2)). The second method determines the initial value of iterations
according to the symmetry of this parallel mechanism. In the light of simulation
results, the pros and cons of the two methods are discussed in the following sec-
tions. The values of all parameters for simulations are as follows: maximum
velocity of Q vQ = 2 m/s, servo rate f = 1 kHz, a = 50 mm, b = 135.5 mm,
c = 45 mm, d = 15 mm, e = 50 mm, L11 = L21 = 70 mm, L12 = L22 = 164 mm,
L31 = 100 mm, L32 = 135.5 mm, L33 = 185.5 mm, 0°� h11 � 103°, 0° � h21
103°, −20° � h31 � 20°, 0° < h32 < 180°, −90° < h33 < 90°, −1 < t < 1.

4.1 First Method

To test the validity of the first method, simulations whose results are partly shown
in Fig. 3 are conducted with Matlab. We firstly use the coordinates of points on
designed trajectories to calculate angles of actuators based on the inverse kine-
matics. Considering the maximum velocity of vQ = 2 m/s and the servo rate
f = 1 kHz, the distance between adjacent two points on the designed trajectories
should be 2 mm. We then use the calculated angles of actuators to obtain solutions
to the forward kinematics by the first method. The efficiency of the first method can
be validated by comparing coordinates of designed trajectories with coordinates of
calculated points. Most of the simulated trajectories can be tracked correctly by the
first method, except the two kinds of trajectories shown in Fig. 3.

The trajectory in Fig. 3a is a line which can be described as: the y coordinate
varies from −30 to 30 with an interval of 2. The x is 50 and z 145. The coordinate of
starting point is (50, −30, 145). As Fig. 3a illustrates, the trajectory fails to be
tracked upon passing through the plane of YOZ. The wrong solutions are far away
from the trajectory. In fact, we found that all of simulated trajectories which go
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through the plane of YOZ are miscalculated. Once one solution is wrong, all of the
following points will fail to be tracked.

Wrong solutions also occur in the second kind of trajectories which are like “U”
as Fig. 3b shows. The designed trajectory, which is very close to but not through
the plane at the bottom of “U”, is tracked successfully when moving to the plane of
YOZ. However, miscalculations exist when moving along the negative Y axis away
from where the trajectory is very close to the plane of YOZ.

Based on the simulation results above, we can conclude that the first method
works at most of points but fails in some cases, e.g. when the trajectories pass
through or move away from the plane of YOZ. This result is related to the symmetry
of the parallel mechanism and the characters of Eq. (11). The reasons are discussed
in the next section.

4.2 Second Method

The second method determines the initial value by the value of |h11 − h21|, which is
based on the characters of Eq. (11) partly shown in Fig. 4. Equation (11) is an
equation of t, h11, h21, h31 and other designed variables, in which t (t = tan (h33/2))
is the one unknown and the coefficients of the equation are determined by other
variables. There are three characters of f(t) making the second method work. As one
example of the first character shown in Fig. 4a, we found that when given the value
|h11 − h21| and h31, the desired roots of all curves are very close to each other even
though h21 varies from 10° to 50° (correspondingly h11 varies from 60° to 100°).
This character is not limited just to the values of |h11 − h21| and h31. Figure 4b
shows one case of the second character that the desired root is slightly affected
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-50

0
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10040

20

0
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-20

0

50

100

150

-50
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m
)

Designed trajectory
Calculated points

Wrong solutions
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X (mm)
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0
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20040
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-20
-40
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50

0

250

150

200

-60

Z 
(m

m
)

Designed trajectory
Calculated points

Wrong solutions

(a) (b)

Fig. 3 Simulations of two trajectories which have wrong solutions by the first method:
a miscalculated when going through the plane of YOZ; b wrong solutions exist when moving away
from where it is close to the plane of YOZ
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when the values of |h11 − h21| and h21 are given although h31 varies over a wide
range from −20° to 20°.

The third character should also be noted that there is always another undesired
root close to the desired root which is generally approximate to zero, as Fig. 4c
illustrates. Furthermore, the smaller the value of |h11 − h21| is, the more close to
each other the two roots are. As a result, both of the roots are more approximate to
zero. That is why wrong solutions often exist by the first method when the

(a) |θ11-θ21|=50°, θ31=0° (b) |θ11-θ21|=50°, θ21=30°

(c) θ21=30°, θ31=0 

t (t=tan(θ33/2)) t (t=tan(θ33/2))

t (t=tan(θ33/2))

-0.4 -0.2 0 0.2 0.4

f (
t)

1018

0

1

2

3
θ21=10°

θ21=30°

θ21=50°

The desired root

-1 -0.5 0 0.5 1

f (
t)

10 18

0

1

2

3

4

5
θ31=-20°

θ31=0°

θ31=20°

The desired root

-1 -0.5 0 0.5 1

f (
t)

1018

-1

0

1

2

3

4
|θ 11-θ 21|=10°

|θ 11-θ 21|=40°

|θ 11-θ 21|=70°

|θ 11-θ 21|=100°

The desired root

Fig. 4 Distribution of solutions of Eq. (11): a, b solutions depend slightly on h21 and h31;
c solutions depend largely on |h11 − h21|. The smaller |h11 − h21| is, the nearer to zero the solution
gets
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trajectories are close to or go through the plane of YOZ. When the value of
|h11 − h21| is very small, Q is close to the plane of YOZ and the two roots are
approximate. If the variation of h33 (correspondingly means t) is large during a
servo cycle, wrong solutions are usually obtained because the initial value (the
solution of the previous step) is more close to the undesired root.

Based on the three characters above, the initial values of t0 for Newton-Raphson
method according to the value of |h11 − h21| are listed as shown in Table 3. To
validate the second method, we choose the ones which have wrong solutions (in
Fig. 3) as the testing trajectories using the initial values in Table 3. As shown in
Fig. 4a, both of trajectories are tracked successfully. Besides, we randomly select
eighty points in the workspace of the parallel mechanism to test the second method.
All of the points can be calculated correctly as Fig. 5b illustrates. It demonstrates
that the second method can not only calculate continuous trajectories but also
discrete points in the workspace.

Table 3 Initial value of
t (t = tan (h33/2))

|h11 − h21| (°) t0 (h11 < h21) t0 (h11 > h21)

(0, 1] 0.00873 −0.00873

(1, 2] 0.01746 −0.01746

(2, 5] 0.04366 −0.04366

(5, 10] 0.08748 −0.08748

(10, 20] 0.13165 −0.13165

(20, 30] 0.17633 −0.17633

(30, 40] 0.22169 −0.22169

(40, 60] 0.26795 −0.26795

(60, 90] 0.31530 −0.31530

(90, 100] 0.36397 −0.36397

(a) (b) 
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Fig. 5 Simulations of the second method: a two kinds of continuous trajectories both can be
tracked successfully; b no wrong solution exists for random discrete points in the workspace
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4.3 Results, Comparison and Discussion

In Sects. 4.1 and 4.2, we talked about the validity of the proposed methods of
determining the initial values. In addition to this, we paid more attention to the
computing time of the two methods. As known, computing time is related to
configuration of CPU, initial value and tolerance of the unknown variables, etc. The
simulations in this paper were all conducted on a 3-GHz computer with the Intel
Core 2 Duo CPU and 4G RAM.

Considering smaller tolerance of t (t = tan (h33/2)) will cost more computing
time, we conducted a simulation using the data in Fig. 5b based on the second
method to find the relationship between the tolerance of t and the error of solutions.
Referring to the simulation result shown in Fig. 6, we finally select 10−8 as the
tolerance of t, which can obtain an average accuracy of 0.00099 mm and a maxi-
mum error of 0.03 mm at the these points.

Using the tolerance of 10−8, we simulated the average computing time of three
continuous trajectories based the two proposed methods. Comparing the results
shown in Table 4, we can conclude that generally less computing time costs by the
first method than the second method, especially in case that the variation of t is very

Tolerance of t (t=tan(θ33/2))
10- 4 10-5 10-6 10-7 10- 8 10- 9 10- 1 0

Er
ro

r o
f s

ol
ut

io
n 

(m
m

)

0

20

40

60

80
Max. error
Max. error points
Average error
Average error points

Fig. 6 Simulation of the
maximum and average errors
of solution with the tolerance
of t: the smaller the tolerance
of t is, the smaller the error of
solution gets

Table 4 Comparison between the two methods

Trajectory Method Average
time (ms)

Average
iteration

Average
error (mm)

Maximum
error (mm)

Wrong
solution

1 1st 0.12 6 1 � 10−13 5 � 10−13 No

2nd 0.15 7 1 � 10−4 2 � 10−4 No

2 1st 0.15 7 3 � 10−5 4 � 10−4 Yes

2nd 0.15 7 2 � 10−4 1 � 10−3 No

3 1st 0.025 2 9 � 10−14 2 � 10−13 No

2nd 0.12 6 9 � 10−14 2 � 10−13 No
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small in a servo cycle as the trajectory 3 does. With the same tolerance of t, a higher
accuracy of solutions can usually be obtained by the first method with the highest
accuracy of up to 0.0002 mm.

However, as mentioned above, wrong solutions often exist by the first method in
some cases which must be avoided in practical occasions. As the trajectories have to
be continuous, if one solution is wrong, all of the following points will fail to be
calculated correctly. Although more computing time and iterations cost, the second
method are robust because right positions can be calculated without the influence of
the solution of the previous step, which is quite different from the first method.
Besides, even though with a lower accuracy, the second method can also work in
many practical cases whose demands are not high.

It is worth considering to calculate solutions to the forward kinematics using
both of the methods. For example, in the case that trajectories are far from the plane
of YOZ, we can use the first method and in other cases, the second method can be
used. As a result, both of a high accuracy and less computing time can be obtained
in the workspace of the parallel mechanism.

5 Conclusions

We proposed a new parallel mechanism for the design of haptic devices. The
forward kinematics of the parallel mechanism can be modeled as an 8th-degree
polynomial equation in one unknown. To meet the control requirement of 1 kHz
update rate, we proposed two methods to determine the initial value in the
Newton-Raphson scheme for the forward kinematics. The first method uses the
solution of the previous step as the initial value for iterations. An accuracy of about
0.0004 mm was obtained with the computing time of 0.15 ms. However, wrong
solutions existed in some occasions. The second method determines the initial value
according to the value of |h11 − h21|. This method is robust comparing to the first
method. The computing time same with the first method was obtained but with a
lower accuracy of 0.001 mm. Higher computing efficiency and accuracy may be
obtained by combining both of the two methods.
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